INDIAN SCHOOL MUSCAT

NAME OF THE	SECOND PERIODIC	CLASS: XII
EXAMINATION	TEST	
DATE OF EXAMINATION	30 . 05. 22	SUBJECT:
		MATHEMATICS
TYPE	MARKING SCHEME	SET - A

SET	Q.NO	VALUE POINTS	MARK
A			
	1.	$y = log \sqrt{\frac{1 + sinx}{1 - sinx}} = \frac{1}{2} log \left(\frac{1 + sinx}{1 - sinx}\right)$	½ mk
		$= \frac{1}{2}[log(1+sinx) - log(1-sinx)]$	½ mk
		$\therefore \frac{dy}{dx} = \frac{1}{2} \left[\frac{\cos x}{1 + \sin x} - \frac{-\cos x}{1 - \sin x} \right]$	½ mk
		Simplifying to get $\frac{dy}{dx} = secx$.	½ mk
	2.	$\sin^2 y + \cos(xy) = k$	
		Diff w.r.t x , 2 $siny$. $cosy$. $\frac{dy}{dx} - sin(xy)\left(x \cdot \frac{dy}{dx} + y\right) = 0$	1 mk
		Simplifying to get $\frac{dy}{dx} = \frac{y \sin(xy)}{\sin 2y - x \sin(xy)}$	1 mk
	3.	$x = 4t, y = \frac{4}{t^2}$	
		Getting $\frac{dx}{dt} = 4$ and $\frac{dy}{dt} = -\frac{8}{t^3}$	$\frac{1}{2} + \frac{1}{2}$
		Getting $\frac{dy}{dx} = -\frac{2}{t^3}$	½ mk
		Getting $\frac{d^2y}{dx^2} = \frac{6}{t^4} \times \frac{dt}{dx} = \frac{3}{2t^4}$	½ mk

4.	$y = \log\left(x + \sqrt{1 + x^2}\right)$	
	$\frac{dy}{dx} = \frac{1}{x + \sqrt{1 + x^2}} \left(1 + \frac{2x}{2\sqrt{1 + x^2}} \right)$	1 mk ½ mk
	Simplifying to get $\frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}}$	½ mk
	Squaring and cross multiplying to get $(1 + x^2) \left(\frac{dy}{dx}\right)^2 = 1$	1/2 + 1/2
	Diff again w.r.t x and dividing by $2 \frac{dy}{dx}$, we get	/2 1 /2
	$(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 0.$	
5.	$f(x) = \begin{cases} ax^2 + b, & x < 1 \\ 2x + 1, & x \ge 1 \end{cases}$ is differentiable at $x = 1$.	
	Given that f is differentiable at $x = 1 \Rightarrow 2a(1) = 2$ ($LHD = RHD$)	1 mk ½ mk
	Solving to get $a = 1$	1 mk
	Since f is differentiable, it is continuous. $(LHL = RHL = f(1))$	½ mk
	$\Rightarrow a+b=3 \qquad \therefore b=2$	
6.	$y = x^{\log x} + \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)$	
	Let $u = x^{logx}$	
	$\Rightarrow \log u = (\log x)^2$	
	Diff w.r.t x to get $\frac{1}{u}\frac{du}{dx} = 2 \log x \cdot \frac{1}{x}$	
	$\therefore \frac{du}{dx} = x^{\log x} \frac{2 \log x}{x} \text{(i)}$	2 mks
	Let $v = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$	
	Put $x = tan\theta$ so that $v = cos^{-1}(cos 2\theta) = 2\theta$	11/ 1
		1 ½ mk

NAME OF THE EXAMINATION		SECOND PERIODIC TEST	CLASS: XII	
DATE OF EXAMINATION		30 . 05. 22	SUBJECT: MATHEMATICS	
TYPE		MARKING SCHEME	SET - B	
	Now, $\frac{dy}{dx} = x$	$ \frac{dv}{dx} = \frac{2}{1+x^2} (ii) $ $ \chi^{\log x} \frac{2 \log x}{x} + \frac{2}{1+x^2} $		½ mk
7.	10 LHD: $\lim_{h \to 0} \frac{f(x)}{f(x)}$ RHD: $\lim_{h \to 0} \frac{f(x)}{f(x)}$ Since LHD $\neq x$ at $x = 10$ (ii) To check at $x = 10$. LHL: $\lim_{x \to 10} (1)$ RHL: $\lim_{x \to 10} (x)$ And $g(10) = 1$	$g(x) = x - 10 \text{ is not different}$ $\frac{10 - h) - f(10)}{-h} = \lim_{h \to 0} \frac{ 10 - h - 10 - 0}{-h} = \frac{ 10 + h) - f(10) }{h} = \lim_{h \to 0} \frac{ 10 + h - 10 - 0 }{h} = \frac{ 10 + h - 10 - 0 }{h} = \frac{ 10 + h - 10 - 0 }{h} = \frac{ 10 + h - 10 - 0 }{h} = \frac{ 10 - 10 }{h} =$	= -1 $= 1$ t differentiable $(x) = x - 10 $	2 mks

SET B	Q.NO	VALUE POINTS	MARK
	1.	$tan^{2}y + cot(xy) = a$ Diff w.r.t x,	
		$2 \tan y \cdot \sec^2 y \cdot \frac{dy}{dx} - x \csc^2(xy) \left(x \cdot \frac{dy}{dx} + y \right) = 0$	1 mk
		Simplifying to get $\frac{dy}{dx} = \frac{y \ cosec^2(xy)}{2 \ tany.sec^2y - xcosec^2(xy)}$	1 mk
	2.	$x = t^2, y = \frac{4}{t}$	
		Getting $\frac{dx}{dt} = 2t$ and $\frac{dy}{dt} = -\frac{4}{t^2}$ Getting $\frac{dy}{dx} = -\frac{2}{t^3}$	½ + ½ ½ mk
		Getting $\frac{d^2y}{dx^2} = -\frac{6}{t^4} \times \frac{dt}{dx} = \frac{3}{t^5}$	½ mk
	3.	logx	
		$f(x) = \frac{\log x}{x}$ Getting $f'(x) = \frac{1 - \log x}{x^2}$ Now, $f'(1) = 1$.	1 mk 1 mk
	4.	$f(x) = \begin{cases} x^2, & x \le 2 \\ ax + b, & x > 2 \end{cases}$ is differentiable at $x = 2$.	
		Given that f is differentiable at $x = 2 \Rightarrow 2(2) = a + 0$ (LHD = RHD)	1 mk
		Solving to get $a = 4$	½ mk
		Since f is differentiable, it is continuous $(LHL = RHL = f(2))$	1 mk
		$\Rightarrow (2)^2 = 2a + b \qquad \therefore b = -4$	½ mk

5.	$y = log\left(x + \sqrt{4 + x^2}\right)$	
	$\frac{dy}{dx} = \frac{1}{x + \sqrt{4 + x^2}} \left(1 + \frac{2x}{2\sqrt{4 + x^2}} \right)$	
	XIVIIX ZVIIX	1 mk
	Simplifying to get $\frac{dy}{dx} = \frac{1}{\sqrt{4+x^2}}$	½ mk
	Squaring and cross multiplying to get $(4 + x^2) \left(\frac{dy}{dx}\right)^2 = 1$	½ mk
	Diff again w.r.t x and dividing by $2 \frac{dy}{dx}$, we get	$\frac{1}{2} + \frac{1}{2}$
	$(4+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 0.$	
6.	$y = x^{\cos x} + \sin^{-1}\left(\frac{2x}{1+x^2}\right)$	
	Let $u = x^{\cos x}$	
	$\Rightarrow \log u = \cos x. \log x$	
	Diff w.r.t x to get $\frac{1}{u}\frac{du}{dx} = cosx.\frac{1}{x} - logx.sinx$	
		2 mks
	Let $v = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$	
	Put $x = tan\theta$ so that $v = sin^{-1}(\cos 2\theta) = 2\theta$	
	$\Rightarrow v = 2 \tan^{-1} x$ $\therefore \frac{dv}{dx} = \frac{2}{1+x^2}$ (ii)	1 ½ mk
	Now, $\frac{dy}{dx} = x^{\cos x} \left(\frac{\cos x}{x} - \sin x \cdot \log x \right) + \frac{2}{1+x^2}$	½ mk
7.	(i) To show $g(x) = x - 5 $ is not differentiable at $x = 5$	
	LHD: $\lim_{h \to 0} \frac{f(5-h)-f(5)}{-h} = \lim_{h \to 0} \frac{ 5-h-5 -0}{-h} = -1$	
	RHD: $\lim_{h \to 0} \frac{f(5+h) - f(5)}{h} = \lim_{h \to 0} \frac{ 5+h-5 - 0}{h} = 1$	2 mks
	Since LHD \neq RHD, $g(x) = x - 5 $ is not differentiable at $x = 5$	= 15

NAME OF THE		SECOND PERIODIC	CLASS: XII	
EXAMINATION		TEST		
DATE OF EXAMINATION		30 . 05. 22	SUBJECT:	
			MATHEMATICS	
TYPE		MARKING SCHEME	SET - B	
	(ii) To check t	he continuity of function $g(x)$	x) = x - 5 at	
	x = 5.			
	LHL: $\lim_{x \to 5} (5 - x) = 5 - 5 = 0$			
	RHL: $\lim_{x\to 5} (x -$	5) = 5 - 5 = 0		2 mks
	And $g(5) = 0$			
	Since LHL= RHL, $g(x) = x - 5 $ is continuous at $x = 5$.			

INDIAN SCHOOL MUSCAT

SET	Q.NO	VALUE POINTS	MARK
С			
	1.	$x = 2t^3$, $y = \frac{3}{t^2}$	
		Getting $\frac{dx}{dt} = 6t^2$ and $\frac{dy}{dt} = -\frac{6}{t^3}$	1/2 + 1/2
		Getting $\frac{dy}{dx} = -\frac{1}{t^5}$	½ mk
		Getting $\frac{d^2y}{dx^2} = \frac{5}{t^6} \times \frac{dt}{dx} = \frac{5}{6t^8}$	½ mk
	2.	$y = 2^{[\log(x)^x]} \Longrightarrow y = 2^{x \log x}$	½ mk

	$\Rightarrow \log y = x \log x \cdot \log 2$	½ mk
	Diff w.r.t x , $\frac{1}{y} \frac{dy}{dx} = log 2(1 + log x)$	½ mk
	$\therefore \frac{dy}{dx} = 2^{[\log(x)^x]} \log 2(1 + \log x)$	½ mk
3.	$\cos^2 y + \sin(xy) = c$	
	Diff w.r.t x , $-2 siny. cosy. \frac{dy}{dx} + cos(xy) \left(x. \frac{dy}{dx} + y\right) = 0$	1 mk
	Simplifying to get $\frac{dy}{dx} = \frac{-y \cos(xy)}{x \cos(xy) - \sin 2y}$	1 mk
4.	$y = log\left(x + \sqrt{x^2 + 9}\right)$	
	$\frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 + 9}} \left(1 + \frac{2x}{2\sqrt{x^2 + 9}} \right)$	1 mk
	Simplifying to get $\frac{dy}{dx} = \frac{1}{\sqrt{x^2+9}}$	½ mk
	Squaring and cross multiplying to get $(x^2 + 9) \left(\frac{dy}{dx}\right)^2 = 1$	½ mk
	Diff again w.r.t x and dividing by $2 \frac{dy}{dx}$, we get	1/2 + 1/2
	$(x^2 + 9)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 0.$	
5.	$f(x) = \begin{cases} q - px^2, & x < 1 \\ 2x + 1, & x \ge 1 \end{cases}$ is differentiable at $x = 1$.	
	Given that f is differentiable at $x = 1 \Rightarrow -2p(1) = 2$ (LHD = RHD)	1 mk
	Solving to get $p = -1$	½ mk
	Since f is differentiable, it is continuous. $(LHL = RHL = f(1))$	1 mk
	$\Rightarrow q - p = 3$ $\therefore q = 2$	½ mk
6.		

	(i) To show $g(x) = x - 20 $ is not differentiable at $x = 20$	
	LHD: $\lim_{h \to 0} \frac{f(20-h) - f(20)}{-h} = \lim_{h \to 0} \frac{ 20-h-20 - 0}{-h} = -1$	
	RHD: $\lim_{h \to 0} \frac{f(20+h) - f(20)}{h} = \lim_{h \to 0} \frac{ 20+h-20 - 0}{h} = 1$	2 mks
	Since LHD \neq RHD, $g(x) = x - 20 $ is not differentiable at $x = 20$	_ 11110
	(ii) To check the continuity of function $g(x) = x - 20 $ at $x = 20$.	
	LHL: $\lim_{x \to 20} (20 - x) = 20 - 20 = 0$	
	RHL: $\lim_{x \to 20} (x - 20) = 20 - 20 = 0$	
	And $g(20) = 0$	
	Since LHL= RHL, $g(x) = x - 20 $ is continuous at $x = 20$.	2 mks
7.	$y = (tanx)^{x} + sec^{-1}\left(\frac{1}{2x^{2} - 1}\right)$	
	Let $u = (tanx)^x$	
	$\Rightarrow \log u = x \log tanx$	
	Diff w.r.t x to get $\frac{1}{u} \frac{du}{dx} = \frac{x}{tanx} \cdot sec^2 x + \log tanx$	
	$\therefore \frac{du}{dx} = (\tan x)^x \left(\frac{x}{\sin x \cos x} + \log \tan x \right) (i)$	2 mks
	Let $v = sec^{-1}\left(\frac{1}{2x^2-1}\right)$	
	Put $x = cos\theta$ so that $v = sec^{-1}(sec 2\theta) = 2\theta$	
	$\Rightarrow v = 2 \cos^{-1} x \therefore \frac{dv}{dx} = -\frac{2}{\sqrt{1-x^2}}(ii)$	1 ½ mk
	Now, $\frac{dy}{dx} = (tanx)^x \left(\frac{x}{sinx cosx} + \log tanx\right) - \frac{2}{\sqrt{1-x^2}}$	½ mk